

Memorial Sloan Kettering Cancer Center

Clinical proof-of-concept for MCLA-128, a bispecific HER2/3 antibody therapy, in NRG1 fusion-positive cancers

BACKGROUND

Neuregulin 1 (NRG1) gene fusions

NRG1 gene fusions, which encode NRG1 fusion proteins, are oncogenic drivers found in <1% of solid tumors. NRG1 fusions occur across various tumor types and are enriched in *KRAS* wild-type pancreatic ductal adenocarcinomas (PDAC) and invasive mucinous lung adenocarcinomas.¹

Functional NRG1 fusion ligands contain the EGF-like domain of NRG1, which binds to extracellular HER3, leading to HER2/HER3 heterodimerization. This results in increased downstream PI3K-AKT signalling and tumour growth (Fig. 1A).²

NRG1 fusions are sensitive to HER2/HER3 directed therapy in vitro and in vivo, thus emerging as clinically actionable targets.^{3,4}

MCLA-128, a bispecific HER2/HER3 antibody

MCLA-128 is a humanized, full-length IgG1 antibody with enhanced antibodydependent cell-mediated cytotoxic activity. This bispecific antibody docks on HER2 and blocks NRG1 from binding to HER3, inhibiting downstream signaling, even in the presence of very high ligand expression (Fig. 1B).⁵

MCLA-128 thus offers a novel therapeutic paradigm for NRG1 fusion-positive cancers.

A) NRG1-fusion proteins function as ligands for HER3 (similar to NRG1) and bind to HER3 with high affinity to promote HER2/HER3 dimerization and downstream signalling. **B)** MCLA-128 inhibits the NRG1/HER3 interaction via its DOCK & BLOCK[®] mechanism, whereby one arm of the antibody binds to the HER2 receptor, optimally positioning the anti-HER3 arm to block the ligand/receptor interaction and prevent HER2/HER3 dimerization.

TUMOR INHIBITION IN NRG1 FUSION MODELS

A) MCLA-128 was tested in OV-10-0050, an ovarian cancer model with a *CLU-NRG1* gene fusion expressing high levels of *NRG1* mRNA³. MCLA-128 treatment led to tumor regression *in vivo*⁵.

B) MCLA-128 also reduced tumor growth in the OV5383 ovarian cancer PDX model (TNFRSF10B-NRG1 gene fusion).

C) MCLA-128 inhibited growth of the MDA-MB-175 breast cancer cell line (DOC4-NRG1 gene fusion), *in vitro* and *in* vivo⁵.

Alison M Schram¹, Eileen M O'Reilly¹, Romel Somwar¹, Ryma Benayed¹, Sara Shameem¹, Thrusha Chauhan¹, Jean Torrisi¹, Jim Ford², David Maussang², Ernesto Wasserman², Marc Ladanyi¹, David M Hyman¹, L Andres Sirulnik², Alexander E Drilon¹ ¹ Memorial Sloan Kettering, NY, USA; ² Merus N.V., Utrecht, Netherlands.

CLINICAL PROOF-OF-CONCEPT IN NRG1-FUSION POSITIVE TUMORS

Patients harboring NRG1 gene fusions were identified using prospective molecular profiling by DNA/RNA-based next-generation sequencing (NGS) with MSK-IMPACT⁶ and/or

PDAC (ATP1B1-NRG1): 34-year-old male NSCLC (CD74-NRG1): 54-year-old male Stage IIIB NSCLO biliarv stent CD74-NRG + KRASwt, ATP1B1-NRG1 + **J**41% PD-L1 neg **MCLA-128 MCLA-128** 2019 7+ months MCLA-128, 750 mg IV, q2w Maximal related toxicity \leq grade 1 4.5+ months MCLA-128, 750 mg IV, q2w **EFFICACY OUTCOME WITH MCLA-128** Maximal related toxicity \leq grade 1 \downarrow from 418 to 11 U/mL (97% max reduction) **EFFICACY OUTCOME WITH MCLA-128** RECIST (CT): 7 weeks: 22% \downarrow , incl. massive liver involvement RECIST (CT): 8 weeks: $33\% \downarrow$ 16 weeks: $41\% \downarrow$ (PR) Non-avid FDG liver metastases at 10 weeks Symptomatic improvement of pain resolution ----CA 19-9 RECIST (%change from baseline) RECIST (%change from baseline) 33% 41% 🗸 7 week CT 16 week CT **Baseline CT** 10 week PET CONTACTS

Corresponding author:

Alison Schram <u>schrama@mskcc.org</u> Phase 2 trial enrollment: Jim Ford (USA) j.ford@merus.nl Ernesto Wasserman (EU) <u>e.wasserman@merus.nl</u>;

> AACR-NCI-EORTC Annual Meeting 2019, October 26 - 30, Boston, MA, USA Phase 2 trial sponsor /funding: Merus N.V. enquiries@merus.nl

WELL TOLERATED SAFETY PROFILE

AEs with sing	le-agent N	MCLA-128 ((N=117)
---------------	------------	------------	---------

	AEs irrespective		AEs related	
	All grades	G3*	All grades	G3*
≥1 adverse event	109 (93%)	43 (37%)	67 (57%)	5 (4.3%)
Diarrhea	35 (30%)	1 (0.9%)	22 (19%)	0
Asthenia	27 (23%)	3 (2.6%)	10 (8.5%)	1 (0.9%)
Anemia	22 (19%)	4 (3.4%)	1 (0.9%)	0
Nausea	20 (17%)	0	10 (8.5%)	0
Fatigue	18 (15%)	2 (1.7%)	8 (6.8%)	0
Vomiting	17 (15%)	0	3 (2.6%)	0
Decreased appetite	15 (13%)	1 (0.9%)	6 (5.1%)	0
Dyspnea	15 (13%)	7 (6.0%)	2 (1.7%)	1 (0.9%)
Hypomagnesaemia	14 (12%)	1 (0.9%)	0	0
Constipation	12 (10%)	0	1 (0.9%)	0
Cough	12 (10%)	1 (0.9%)	2 (1.7%)	1 (0.9%)
Abdominal pain	11 (9.4%)	0	2 (1.7%)	0
ALT increased	10 (8.5%)	4 (3.4%)	0	0
AST increased	10 (8.5%)	4 (3.4%)	0	0
Abdominal pain upper	9 (7.7%)	0	0	0
IRR	9 (7.7%)	2 (1.7%)	9 (7.7%)	2 (1.7%)
Pyrexia	6 (5.1%)	0	3 (2.6%)	0
Myalgia	5 (4.3%)	1 (0.9%)	3 (2.6%)	1 (0.9%)
Mucosal inflammation	5 (4.3%)	0	4 (3.4%)	0
Chills	4 (3.4%)	0	4 (3.4%)	0
Hypersensitivity**	4 (3.4%)	0	4 (3.4%)	0
Stomatitis	3 (2.6%)	0	3 (2.6%)	0

Of 145 solid tumor patients treated with single agent MCLA-128 in the phase 1/2trial, 117 received the RP2Ds evaluated in the ongoing phase 2 expansion (750 mg q3w; 800+400 mg weekly).

The majority of suspected related AEs were grade 1-2, with <5% of patients having grade 3 events and no grade 4 related events.

No severe related skin or GI toxicity was reported, and there was an absence of clinically significant LVEF decreases and cardiac AEs.

Data cut off: 12-Jan-2019.

* 3 patients (2.6%) each had 1 grade 4 unrelated AE; no patients had grade 4 related AEs

**A 71-year-old patient had a grade 5 hypersensitivity reaction followed by cardiorespiratory arrest (previously reported ⁸) he patient's baseline cardiac condition (severe aortic stenosis) contributed to the fatal outcon

KEY FINDINGS & FUTURE DIRECTIONS

- MCLA-128 potently inhibits NRG1-driven tumor growth in vitro and in vivo, including at high NRG1 levels present in NRG1 fusion-positive cancers.
- We provide a clinical proof-of-concept of MCLA-128 in *NRG1* fusionpositive pancreatic and lung cancers with demonstrated sustained improvement in all clinical parameters (radiologic, biomarker, and symptomatic).
- MCLA-128 has a very well tolerated safety profile.
- Three NRG1 fusion-positive cohorts (pancreas, lung, & other tumors) have been opened in the ongoing phase 2 basket trial with MCLA-128.

